更重要的是,能量帆恒星际宇宙飞船的发射系统主体部分位于地球(轨道附近),因此若出现故障是可以维修和维护,前端宇宙飞船只需要携带接受能量的帆面。毕竟当宇宙飞船飞抵诸如半人马座α星时出现故障将得不到任何修复。该技术可以容许恒星际飞行过程中犯错,失败的探测器很容易在流水线上被生产出来。
詹姆斯·本福德认为可以先行进行微波定向能量束的测试,该技术可以在太阳系行星系统内执行各种任务,可将需要发射的有效载荷在数个小时的时间内加速到每小时100万英里,并在进入火星轨道时快速减速制动,因此该技术投放到太阳系内行星系统的快速运输中,不到两周就能抵达火星。对于更遥远的星际任务,比如飞往一光年外的存在大量彗星群的奥尔特云,本福德估计该任务需要两英里直径的天线,功率达24千兆瓦,成本约1440亿美元。
携带的有效载荷为150磅,在经过五个小时的能量束加速后,探测器的速度将提高至每小时4万英里。真正的恒星际宇宙飞船需能在40年内以十分之一的光速航行至半人马座α星,如果纳米技术得到广泛使用,宇宙飞船的有效载荷将会达到数吨。科学家也设想一种输出功率为300太瓦、直径60英里的天线,虽然可以使探测器得到迅速加速,但消耗的能量将是目前全球电力日消耗量的20倍,探测器将产生50个G的加速度
文章推荐:银河系全景图 人体悬浮术 中国最贵的烟 无奇不有